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Abstract

This paper discusses pitfalls in two way fixed effects (TWFE) regressions when the outcome

variables contain nonlinear and possibly stochastic trend components. If a policy change shifts

trend paths of outcome variables, TWFE estimation can distort results and invalidate inference,

especially in a context of evolving policy decisions. A robust solution is proposed by allowing

for dynamic club membership empirically using a relative convergence test procedure. The

determinants of respective club memberships are assessed by panel ordered logit regressions.

The approach allows for policy evolution and shifts in outcomes according to a convergence

cluster framework with transitions over time and the possibility of eventual convergence to a

single cluster as policy impacts mature. The long run impact of a policy can thus be examined

via its impact on convergence club membership. An application to new weekly US Covid-19

vaccination policy data reveals that federal level vaccine mandates produced a merger of state

vaccination rates into a single convergence cluster by mid-September 2021.
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1 Introduction

Two way fixed effects (TWFE) regressions are commonly used in empirical work, particularly to

evaluate the effectiveness of an exogenous policy change. Rapidly developing difference in difference

(DiD) and event-study literature has revealed that the traditional TWFE regression is not an

appropriate method to estimate the average treatment effect on treated units (ATT) in particular

treatment settings. Callaway (2023), De Chaisemartin and D’haultfœuille (2023), Roth et al. (2023)

and Arkhangelsky and Imbens (2024) provide surveys on this ongoing literature. To implement

DiD or event-study estimation, some basic conditions are required: first, controlled and treated

units (or groups) need to be clearly defined for DiD estimation. If there is no control unit, then

at least treatment timing should be well defined for event-study estimation. Second, the parallel

trends condition should be satisfied prior to treatment. If these conditions are not satisfied, ATT

is not well defined and hard to identify (Roth (2022)).

The present paper examines a recent empirical case where these specified conditions were not

met, namely Covid-19 vaccination policies. And the paper proposes an alternative approach to

estimate policy efficacy that takes into account the time path of responses to treatment. Indeed,

in attempts to slow the spread of Covid-19 and to increase vaccination rates, a variety of policies

were implemented at the federal, state, and local levels in the United States in 2021 following

the availability of Covid-19 vaccines. Some such policies were cash lotteries for vaccination, mask

mandates, and federal and employer vaccination mandates. While some states were implementing

policies to incentivize vaccination and slow the spread of Covid-19, other states responded with

contrary policies, such as bans on the proof of vaccination, and mask mandate bans. With such a

vast range of policy implementations, it is important to disentangle the multiple policies to identify

those which were effective and those which were not in order to understand their impact and inform

future policies.

DiD estimation is used often to evaluate the efficacy of a singular binary policy. In our analysis

data are at the state level, but some policies were implemented at city or county levels, thereby

impacting only a portion of the state. The policy variables may therefore be treated as continuous

because they account for the fraction of a state’s population exposed to the policy and they were in

practice inevitably time varying.1 Another difficulty is that multiple vaccine and mask policies were

implemented with overlapping timing during this period and there were federal policies simultane-

ously active that impacted all states. Moreover, as is shown later, the parallel trends assumption

does not hold, making it nearly impossible to define a control group for a panel DiD analysis, or to

define sharp event timing for each vaccination policy. Under the absence of a clearly defined control

group, overlapping timing of policies, and continuous time varying policy variables, the commonly

1Vaccine mandates for state employees, bans on proof of vaccination, and mask mandate bans are an
exception. These three policies were effective state-wide and were therefore binary.
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employed approach to estimation is TWFE. But serious drawbacks arise with TWFE implementa-

tion when outcome variables include stochastic trends or other nonstationay components.

To fix ideas suppose yit is a relevant outcome variable comprising a sequence of panel obser-

vations of interest across individuals (i = 1, · · · , n) and over time (t = 1, · · · , T ) and let xit be a

relevant policy variable. A typical TWFE regression specification for analyzing such data takes the

form

yit = aoi + ηot + x′itβ + vit, (1)

where aoi and ηot are individual and time specific effects. When xit is a single dummy variable, we

will denote it as Dit. Otherwise, we assume that xit is a vector of continuous stationary random

variables.2 The present paper considers general and empirically relevant cases where the policy

variable xit may itself evolve over time and where the outcome variable yit may have nonstationary

characteristics sourced beyond the policy input. In complex applied work where the nonstationarity

in outcomes is not fully captured by policy inputs or time specific effects, the regression residual

vit becomes nonstationary and the adequacy of TWFE regressions in accurately measuring policy

effectiveness may be called into question. We address the impact of nonstationary outcome variables

both with continuous policy variables, as is the case in our empirical example, and with binary policy

variables which more readily lend themselves to DiD estimation.

Previous studies often bypass such complications as nonstationary output variables and evolving

policy variables by assuming a small fixed T , often simply T = 2 observations, and by allowing a

large cross section sample size n to deliver asymptotics. In cases like the recent Covid-19 pandemic

experience successive policy changes over time need to be accommodated in the data analysis and

longer time series samples are available for assessing the evidence of successive policy effects in the

observed outcomes. Our empirical study has T = 40 and n = 51 observations, so that cross section

and time series sample sizes are comparable.

We study cases where trends are homogeneous and heterogeneous across individuals under the

null of no treatment effect or no policy effectiveness. Under the alternative, policy variables influence

outcome variables either in levels or in trends. If a stationary policy variable affects a nonstationary

outcome variable in levels, the policy effectiveness based on xit does not last long, holding only

temporarily. In this case, a TWFE regression with xit is valid only under homogeneous trends

with consistent estimation and valid standard errors as n → ∞. But the properties of estimation

and inference are less favorable when the outcome variables are nonstationary with heterogeneous

trend behavior. A partial solution is straightforward under the assumption that policy variables

affect outcomes only in levels. Indeed, level effects can be consistently estimated either under

2A set of control variables usually enter in (1) with xit.
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homogeneous or heterogeneous trends using the differenced regression

∆yit = ai +∆ηot +∆x′itβ +∆vit, (2)

However, it is unrealistic to expect that policy variables affect outcomes only in levels. When a

policy affects trend behavior of the outcome variables, the first difference TWFE regression (2) is

misspecified, leading to inconsistent estimation of policy effects.

Our study considers several issues that bear directly on TWFE and DiD treatment effect anal-

ysis. The primary concern examines outcome variables when stochastic trend components are

omitted from the regression and when heterogeneous trend behavior over time or across individuals

affects outcomes. In both cases, the TWFE system is misspecified, leading to growing uncertainty

and inconsistent estimation. Our approach allows, in addition, for policy evolution and shifts in

outcomes over time according to a convergence cluster framework with transitions over time and

the possibility of eventual convergence to a single cluster as policy impacts mature.

One of the main contributions of the paper is to provide a methodology that organizes non-

stationary panel data into ordered panel multinomial variables by means of a dynamic clustering

mechanism that allows for shifts in clusters over time. To fix ideas, define Cit to be the con-

vergence club membership in period t of the i-th individual and suppose all individuals within a

certain convergence club share the same stochastic trend. If an individual grows faster over time

and joins another convergence club that attains higher outcomes, then Cit membership changes

over time. The convergence clustering mechanism (CCM hereafter) proposed in earlier work by

Phillips and Sul (2007a, hereafter, P-S) transforms statistics from panel observations to clustered

cross-sections, but potential dynamic changes amongst club memberships are ignored. In practice,

club membership can change over time, particularly as relevant policies are introduced or evolve

over time, and such evolution can itself be a natural focus of interest concerning policy impacts.

Our approach in the present paper is to develop the CCM of P-S into a dynamic version that

accommodates such possibilities. Once dynamic group membership is estimated, panel logit (or

multinomial logit) regression enables estimation and inference concerning driver variables and the

determining mechanisms of the groups.

A second significant contribution of the paper is to create a new weekly database that tracked

state and District of Columbia announcements of the numerous vaccination policies implemented

over the period from March 2021 to February 2022.3 This database enables a detailed empirical

study of the impact of federal and state vaccination policies on state vaccination rates.

A final contribution is to address how nonstationary and nonlinear trended outcome variables

3These policies included lotteries, cash for vaccination incentives, community outreach programs, vaccine
mandates for state employees and or healthcare workers, indoor vaccine mandates or mandates for gatherings
over a certain number of people, mask mandates, bans on proof of vaccination, and bans on mask mandates.
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impact DiD estimation. Depending on the type of DiD estimator, nonstationary or nonlinear

trended outcome variables can affect both identification and inference. While this is not an im-

mediate concern in our empirical example, it deserves attention in other settings and we discuss

how DiD is impacted by each outcome type at the end of each subsection in Section 3, which may

be of interest to readers using DiD methods. Additionally, our proposed approach for evaluating

nonstationary outcome variables – the dynamic club clustering mechanism (DCCM) – is directly

related to parallel trends tests in the DiD literature. Accordingly, in this context we address some

potential issues and other testing methods available in the panel data econometrics literature.

The rest of the paper is organized as follows. Section 2 considers issues arising from nonsta-

tionary outcome variables and pitfalls in the use of first differences in policy evaluation. This

section has three subsections. The first two subsections deal with problems of TWFE regressions

when stationary policy variables affect the level and trend of nonstationary outcomes. The third

subsection provides a short discussion of how nonstationary outcomes can affect various DiD es-

timators. Dynamic mechanisms for club membership are developed in Section 3, which also has

three subsections. The first subsection provides a short review of the relative convergence test

and how it can be used to test for a homogeneous (stochastic) trend. We also discuss how this

relative convergence test can be utilized for testing parallel trends in DiD estimation. The second

subsection provides a step-by-step procedure for implementing the dynamic convergence clustering

mechanism (DCCM). The final subsection explains how to use the estimated club membership to

evaluate policy effectiveness. Section 4 provides an application of the DCCM to state Covid-19

vaccination rates in the United States. Panel logit modeling is applied to assess the effects of U.S.

federal level mandate announcements and various state level Covid-19 vaccine policies on state

convergence club membership. Section 5 concludes. Technical background, derivations, proofs, fed-

eral and state level mandate policies, additional logit regression specification results, and further

simulations are provided in the Online Supplement to this paper.

2 Pitfalls of TWFE Regressions with Nonstationary Outcomes

Throughout the paper we assume that the dependent or outcome variables are nonstationary,

whereas the policy variable is stationary.4 We consider the following three general models allowing

nonstationary outcomes when a policy variable does not influence yit (i.e., under the null hypoth-

4As shown later in the empirics, key policy variables often tend to change in a staggered manner over
time. After removing the steps these variables are typically flat or stationary about certain levels. As such,
they impact outcome variables only temporarily. On the other hand a policy that switched on and off at
different levels of intensity could produce nonstationarity in mean.
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esis):

yit =


ai + t+ ξit, ξit = ξit−1 + uit forM1,

ai + bit+ ξit, ξit = ξit−1 + uit forM2,

ai + bitt+ ξit, ξit = ξit−1 + uit forM3,

(3)

where the nonstationarity includes heterogeneous deterministic trend functions as well as a stochas-

tic trend. Specifically: in M1, yit has a homogeneous linear trend; in M2, yit has a heterogeneous

linear trend with time invariant individual coefficients bi; and in M3, the individual trend coef-

ficients bit are time varying, which nests M1 and M2. A policy variable, xit, is assumed to be

stationary. One may introduce a staggered or continuous trend to xit
5, but such modifications do

not alter the main results of the paper.

Under this framework there are two mechanisms by which the stationary policy change can

affect the nonstationary outcome under the alternative: (i) xit can affect the level of yit (designated

C1); and (ii) xit can affect the trend coefficient bit (designated C2). Under the null of no policy

effectiveness, the outcome variables are given by (3). In this case the parameter β, which measures

the policy impact in the following equations, is zero. The two alternative cases are written as

follows.

yit = ai + ηt + βxit + ξit forC1, (4)

bit = bo + βxit + eit forC2, (5)

where ηt in (4) may be a linear or more general deterministic trend and bit are the trend coefficients

in M3. We consider C1 in the next subsection, showing that if the true data generating process

is either M1 or M2, a first difference regression can account for the nonstationary process in C1.

C2, however, is a more realistic formulation that has been used by labor and health economists

in situations where a stationary policy affects the long run behavior of outcome variables. For

example, Abadie et al. (2010) showed that California’s tobacco control program changed the slope

of the trend in tobacco consumption. In such situations first difference regression fails, as shown in

Section 2.2. An alternative solution is provided in Section 3.

2.1 Policy influence only on levels: C1

This model has been popularly considered in the treatment effects literature. Without a homoge-

neous trend assumption, difference-in-difference estimation fails to identify the treatment effects.

Even with homogeneous trends, when a policy variable xit is stationary in a model such as (4), it is

not a long run determinant of the outcome variable and impacts the outcome only temporarily. An

empirical example of this phenomenon was the ‘Cash for Clunkers’ program implemented in the

5As shown in Figure 3 there were staggered increases in the Federal vaccine mandate, whereas the vaccine
lottery had been in decline continuously after July in 2021.
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United States in 2009. Under that program, eligible car owners were given a substantial rebate to

trade in their old cars for new ones. The purpose of the program was twofold: to stimulate a weak

economy by encouraging car sales, and to reduce CO2 emissions by getting rid of older, less fuel

efficient cars. The program caused a temporary, moderate increase in new car sales during the two

months it was in place, however there was no increase in overall car sales for the year. Essentially,

some people who would have bought a new car anyway that year did so in the couple of months the

program was in place rather than spreading their purchases across the year. The end result in new

car sales was no different than it would have been in the absence of the program (Li et al. (2013)).

Against this background consider the following TWFE regression frequently used in applied

research

yit = ai + ηt + βxit + vit, (6)

where ηt is a time fixed effect and the regression error vit in (6) is the nonstationary component ξit.

Let β̂l be the TWFE estimator of β in (6). To simplify notation, rewrite (6) in differenced form as

ẏit = βẋit + v̇it, (7)

where ẏit = yit − 1
T

∑T
t=1 yit −

1
n

∑n
i=1 yit +

1
nT

∑n
i=1

∑T
t=1 yit, with similar definitions for the other

variables. This within-group transformation does not remove stochastic nonstationarity but it does

eliminate heterogeneous individual fixed effects and any homogeneous (over individuals) trend. The

consequences of using this type of TWFE regression with a policy variable xit in place (such as the

‘Cash for Clunkers’ program) arise from the fact that the regression is ill-balanced because stochastic

trend effects remain in v̇it and are transmitted to ẏit, making policy effects only temporary. The

lack of balance induces a reduction in the signal to noise ratio that affects the accuracy of the

TWFE estimator, β̂l in (7). The properties of β̂l depend in this case primarily on the cross section

sample size n, so that increases in the number of time series observations do not help to shrink the

variance of β̂l.
6 More formally, as n, T → ∞, when xit affects yit only in levels as in (4), the limit

distribution of β̂l is given by
√
n(β̂l − β) → N (0, Vβ), (8)

with asymptotic variance Vβ shown in the Online Supplement (Theorem 1). A panel robust variance

estimator, clustering by time, can be used to consistently estimate Vβ.

Next, consider the heterogeneous trends case M2. Many dependent variables used in empirical

TWFE regressions can be expected to involve heterogeneous trends in the data. For example, if

the unit of observation is counties, and the dependent variable is obesity levels, the slope of obesity

growth almost certainly varies county by county. This heterogeneity in trends is a complication

6In this regression, the signal from the sample variance of ẋit is dominated by the sample covariance of
ẋit and v̇it because the regression error is nonstationary. See the Online Supplement for further analysis.
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that affects asymptotic behavior and finite sample performance even when some of the regressors

themselves include trends. As long as time-homogeneous coefficients are assumed in estimation,

the regression error carries the effects of heterogeneous trends, leading to failure in standard limit

theory and inference. To illustrate, suppose yit is generated from

yit = ai + bit+ βxit + ξit, (9)

where ξit is nonstationary.
7 Then the induced TWFE residual in (7) includes a trend term under

the null β = 0, i.e.,

v̇it = (bi −
1

n

n∑
i=1

bi)(t−
1

T

T∑
t=1

t) + ξ̇it, (10)

so that cross section variation of v̇it grows at an O(t2) rate even when ξit is stationary. When xit

affects yit in levels under heterogeneous trends, the asymptotic behavior as (T, n) → ∞ of β̂l are

shown in Theorem 3 of the Online Supplement to have the following form

√
n(β̂l − β) = Op(T

1/2) +N (0, V ). (11)

The following first difference (FD) regression can be used to bypass this problem

∆yit = ai +∆ηt + β∆xit + eit, (12)

or in two-way transformed form as

∆ẏit = β∆ẋit + ėit. (13)

Importantly, the FD regression includes two way fixed effects. The individual fixed effect ai captures

potential heterogeneous trend coefficients, while the time fixed effect ∆ηt captures common time

changes. The regression error eit is now stationary. Let β̂fd be the TWFE estimator in (13). It is

straightforward to show that as T, n → ∞,

√
nT (β̂fd − β) → N (0, Vβfd

), (14)

where Vβfd
is the asymptotic variance of β̂fd, which is smaller than Vβl

in (8). This limit theory is

valid only if xit is known to influence just the level of yit. Tables 1 and 2 in the Online Supplementary

Appendix report Monte Carlo simulation results that detail these effects.

In practice, it may be challenging to assess whether xit affects the level or the trend behavior

of yit or both. For when the outcome variable itself has a trend, any level change is temporary and

7The asymptotic results do not change even when ξit is stationary under heterogeneous trends
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permanent effects or long run impacts are inevitably influenced by the trend or trend coefficients.

It may therefore appear reasonable to assess how a policy change affects growth rates rather than

level outcomes, suggesting a TWFE regression in differences as in (2). However, if the outcome

variable has nonlinear or time-variable trend behavior then a TWFE regression in differences also

fails to capture the impacts of a policy change. This issue is now discussed.8

2.2 Policy influence on trends: C2

For further analysis of potential pitfalls in TWFE estimation consider the data generating process

(DGP)

yit = ai + bitt+ ξit, with ξit = ρξit−1 + eit, (15)

where intercepts ai affect the level of yit, the bit are heterogeneous time varying trend coefficients,

and the ξit are time series with a unit root when ρ = 1.9 Now suppose that a policy variable xit

influences bit where xit is a simple dummy variable. In this case, the policy changes the slope of

the trend in the outcome variable, yit, impacting its long run trajectory. Assume xit = 0 for all i

except for i = 1 and t ≥ τ , which is a typical setting in the synthetic control literature.

To avoid spurious effects and restore test power, as mentioned in subsection 2.1, common

empirical practice is to take the first difference of the outcome variable, yit when it is nonstationary,

as it is in (15). The pitfalls that can arise from the practice of taking first differences when a policy

impacts long run trend behavior of an outcome variable are a prime focus of the present paper. In

C2 where xit affects bit, regressions either in first differences or growth rates of yit fail to deliver a

satisfactory proxy for the temporal impact bit. For instance, taking differences of (15) gives

∆yit = bitt− bit−1(t− 1) + ∆ξit = bit +∆bit(t− 1) + ∆ξit, (16)

The reason for taking first differences is to eliminate the trend from yit, rendering ∆yit stationary.

But when the impact of a policy is nonlinear, such as when bit changes at some point in time,

taking first differences does not eliminate the time trend effects. Hence, regression of ∆yit on fixed

effects (both individual and time specific) and xit produces misleading findings about the impact

of the policy because of the missing trend and policy effects in the component ∆bit(t− 1).

Instead of a linear trend, we can use a general nonlinear trend function. To provide an intuitive

demonstration of how a time varying coefficient affects the regression, we consider a simple time

8A more technical discussion is given in the Online Supplement.
9If the DGP (9) changes to (15), the asymptotic effects are similar but the reported simulation results

deteriorate and these now depend on the variance of bit.
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series without any stochastic random variables given by

yt = a+ btηt, with bt = xt,

where ηt is a unknown nonlinear trend, xt is a policy variable, and bt is the coefficient on the

unknown nonlinear trend. As we will show later, the time series of federal and employer vaccine

mandates (FEVM) for Covid-19 vaccinations in the United States is positively correlated with the

state trends in cumulative vaccination rates. To fix ideas, let yt be the cross sectional average of

vaccination rates in these states, which we will later call ‘Club 2’; and xt is FEVM. After eliminating

a by taking the time series mean of yt, we can calculate ηt by dividing yt − 1
T

∑T
t=1 yt by xt. This

hypothetical trend, ηt, and xt are plotted in Figure 1(a). As the figure shows, the calculated ηt does

not have a simple linear trend but rather a nonlinear trend. Next, Figure 1(b) shows FEVM and

yt. Obviously, FEVM seems to have a positive relationship with yt, but due to the nonstationary

or nonlinear trending nature of yt, this relationship is not stable in the long run as we discussed

in the previous subsection. Figure 1(c) displays FEVM and ∆yt. As the figure shows, ∆yt has a

negative relationship with FEVM even though ηt is generated under the restriction of bt = xt.

To summarize, we examine the use of TWFE in nonstationary outcome variables with three

different types of trends: homogeneous trends (M1), heterogeneous linear trends (M2), and our main

focus, heterogeneous nonlinear trends (M3). The use of TWFE with M1 will result in misleading

results because any impact from xit is only temporary and will not alter the long run outcomes

of the variable of interest. Running a TWFE regression with an M2 outcome variable results in

divergent asymptotic behavior and there is little test power to detect policy impacts. Taking first

differences can alleviate the lack of power that affects TWFE regressions when the DGP of yit

contains linear trends. But TWFE regressions formulated with first differenced outcomes are not

suited to evaluate the effectiveness of policy changes if yit involves nonlinear trend effects. In such

circumstances the problem of how to evaluate the effectiveness of policy changes is of considerable

empirical interest. Two solutions are discussed in section 3.

2.3 Influence of Nonstationary Outcomes on DiD Estimation

TWFE estimation is often used in DiD analysis but the DiD approach covers a broad range of

estimators. The impact of nonstationarity, particularly with stochastic trends, of the outcome

variables on the estimated treatment effect depends on the type of DiD estimation. DiD identifies

causal treatment effects of a policy change by comparing a treated group with an untreated control

group. Identification hinges on the parallel trends assumption, which requires that the two groups

have parallel trends prior to policy implementation so that, in the absence of the policy change, the

trajectory or time trend of the treated and untreated groups would continue to be parallel. Any
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Figure 1: Data Generating Process and Observed Series
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Notes: yt is the cross sectional average of the log cumulative vaccination rates for states initially in ‘Club 2’, the states with relatively low

initial cumulative vaccination rates. xt is the FEVM, and we decompose ỹt = yt − T−1 ∑T
i=1 yt = btηt where bt = xt. Given this relationship

the unknown trend, ηt, is calculated as ỹt/bt. Thus, xt has a one to one relationship with bt. Figure 1(a) displays the FEVM variable, xt and
the calculated hypothetical trend variable, ηt. The figure clearly shows the nonstationary nature of ηt. Figure 1(b) plots the mean cumulative
vaccinations yt alongside xt. The two are clearly positively correlated but, due to the nonstationary and nonlinear trending nature of yt,
this relationship is not stable in the long run, as discussed in subsection 2.1. Figure 1(c) displays the FEVM and the first-differenced average log
cumulative vaccination rate, ∆yt. The pitfalls discussed in subsection 2.2 are readily apparent in this figure, as there is a clear negative relationship
between the FEVM and ∆yt even though ηt is generated using xt = bt.

subsequent deviation from the pre-trend can therefore be attributed to the policy. Literature on

DiD estimation has grown rapidly the recent years. De Chaisemartin and D’haultfœuille (2023),

Roth et al. (2023), and Arkhangelsky and Imbens (2024) survey some of this rapidly developing

literature.

Impact of Nonstationary Outcomes on ATT

Before considering the impact of nonstationary outcomes we address how TWFE estimation fails

to identify the ATT in a traditional DiD setting based on the following TWFE regression

yit = ai + ηt + βDit + eit, (17)
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Under the homogeneous trend model (M1) or parallel trend setting in (3), the TWFE estimator is

known to be inconsistent. To see this, rewrite (7) as

ẏit = βḊit + ėit, (18)

where ẏit is fully demeaned yit defined following (7). It is easy to see that Ḋit includes nega-

tive numbers due to two-way within group transformation. Naturally, the estimated treatment

effect based on (18) becomes inconsistent. (See Goodman-Bacon (2021) and De Chaisemartin and

d’Haultfoeuille (2020) for detailed discussions.) There are two alternative estimators. The first

type uses ∆yit and directly calculates weights for the treatment effects. (See De Chaisemartin and

d’Haultfoeuille (2020) and Callaway and Sant’Anna (2021)). For example, De Chaisemartin and

d’Haultfoeuille (2020)’s estimator (DiDM) is the weighted average

DiDM =
n(1,0),t

ns

T∑
t=2

DiD+,t +
n(0,1),t

ns

T∑
t=2

DiD−,t (19)

of the two estimators

DiD+,t =
1

n(1,0),t

∑
Dit=1,Dit−1=0

∆yit −
1

n(0,0),t

∑
Dit=0,Dit−1=0

∆yit,

DiD−,t =
1

n(1,1),t

∑
Dit=1,Dit−1=1

∆yit −
1

n(0,1),t

∑
Dit=0,Dit−1=1

∆yit,

where n(j,s),t is the total number of units with Dit = j and Dit−1 = s for each t and t − 1 with

j = 0, 1 and s = 0, 1. And ns is the total number of cases when n(0,1),t and n(1,0),t occur during the

same time periods. Callaway and Sant’Anna (2021)’s estimator can be expressed in a similar way

based on ∆yit. We call them ‘direct DiD’ (D-DiD) estimators. The second type of estimator uses

Dit instead of Ḋit in (18), giving the regression equation

ẏNit = βDit + e∗it, (20)

where ẏNit = yit − âNi − η̂t
N , âNi and η̂Nt are individual and time fixed effect estimators using

only non-treated observations. Roth et al. (2023) call the resulting estimator the ‘imputation DiD

(I-DiD)’ estimator. (See Borusyak et al. (2024), Gardner (2022) and Liu et al. (2024) for more

discussion).

Now, assume yit follows M1. In this case it is evident that D-DiD does not have any estimation

and inference issue since it is constructed based on ∆yit. Denote nI,t and nN,t as the total number
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of treated and non-treated units at time t. Further let TI be the total number of treatment times,

and nm = min[nI,t, nN,t] for all t. Then as nm,t, TI → ∞, we have

√
nmTI(β̂D-DiD − β) →d N (0, σ2

D-DiD) (21)

On the other hand the I-DiD estimator may suffer from inference problems since the regression error

e∗it is nonstationary, leading to a lack of balance in the regression as discussed earlier in relation to

(7). So I-DiD estimation of (20) means that the resulting estimator β̂I-DiD has similar asymptotic

behavior as in (8). That is,
√
nm(β̂I-DiD − β) →d N (0, σ2

I-DiD), (22)

where there is no panel gain asymptotically by considering more TI observations.

Violation of Parallel Trend Assumption

The parallel trends assumption is the cornerstone of the identification of the ATT using DiD.

Several recent papers deal with the problems of pre-trend testing. Roth (2022), Rambachan and

Roth (2023), Kahn-Lang and Lang (2020), and Bilinski and Hatfield (2018) provide critiques of the

conventional pre-parallel trend test and its alternative. In the presence of a heterogeneous trends

(model M2) the parallel trends assumption no longer holds and both D-DiD and I-DiD estimators

are influenced by trend effects. In the dynamic heterogeneous trends model (M3), as long as the

parallel trends assumption holds in the pre-treatment period, the D-DiD estimator can consistently

capture the treatment effect. But inference based on the I-DiD estimator remains dependent on

whether the regression errors are stationary. Test power is particularly sensitive: in stationary

cases power approaches unity when n or T rises, whereas in nonstationary cases power rises only

as n rises and quickly stabilizes as T becomes large for a given value of n. A simulation study in

the online supplementary appendix illustrates these findings.

In the next section we demonstrate how a relative convergence test can be used for testing for

parallel trends in more complex settings that allows for a general evolution of the trend environment

that helps to address these issues.

3 A Dynamic Clustering Approach

This section describes a clustering approach to the evaluation of policy impacts in the presence of

trending outcomes, allowing for coalescence or divergence. The first part introduces the relative

convergence test proposed by P-S, which can be used to test for a common nonlinear or stochastic

trend in outcome data. If a panel of interest shares a common nonlinear or stochastic trend, then

the TWFE regression in (13) is valid since xit cannot influence the homogeneous trend coefficient

13



heterogeneously.10 The second part provides a methodology for transforming nonstationary panel

data into stable multinomial club membership using a recursive clustering algorithm.

3.1 Testing for Homogeneous Trends

As in P-S, the starting point is to represent trending multidimensional data in terms of a panel

components model as

yit = bitηt, (23)

where ηt is an unknown trend which may be either a stochastic process or a nonlinear deterministic

time trend. The representation in (23) is general and typically has unidentified multiple compo-

nents. For instance, if the DGP were yit = ai + bit + ξit where ξit = ξit−1 + eit, then we could

rewrite the model in the form of (23) as yit = (ait
−1 + bi + ξitt

−1)t = bitt.

If yit/yjt → 1 as t → ∞, then we say that yit relatively converges to yjt over time. Let µ̂t

be the sample cross section average of yit. If yit/µ̂t → 1 as t → ∞ for all i, then the panel yit

is said to be relatively convergent to its cross section average. The ratio hit := yit/µ̂t traces out

a transition path over time that manifests convergence when hit → 1. In this case, yit shares the

same (stochastic) trend, which is factored out in the ratio, thereby enabling analysis and inference

about convergence. Figure 2 shows the relative transition paths for two groups in our empirical

example. ‘Club 1’ and ‘Club 2’ are the cross sectional averages of the relative transition curves

for high and low vaccination states, respectively. In this case there was no overall convergence

early in the period, as evident in the initially diverging paths of the two clubs. If there were initial

convergence, we would have only a single club and the ratios would converge with yit
µt

→ 1 for all

states i. Instead, up until the 10th week the distance between two clubs increased, showing clear

evidence of divergence. Following the 10th week the distance between them decreases but remains

larger than the initial distance for the next 9 weeks. After the 19th week, however, the distance

between the two groups continues to decrease and is soon less than the original distance, suggesting

a merger of the two clubs to a larger single convergence club.

The test for relative convergence in P-S relies on the following (so-called log t) regression

log
H1

Ht
− 2 log (L (t)) = a+ b log t+ et, (24)

which is estimated by ordinary least squares and where

Ht =
1

n

n∑
i=1

(hit − 1)2 , forhit =
yit
µ̂t

, (25)

10Identification of the long run determinant then becomes of interest because in this case xit does not
affect the long run trend of yit. Analysis of this case is a separate matter and left for future research.
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Figure 2: Relative Transitions for Club 1 and 2
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Notes: The blue line with circles is the relative transition path of states that were initially in Club 1, where the Club 1 relative transition path
is defined as the ratio of the average cumulative vaccination rate of states in Club 1 (C1) at time t, divided by the national average cumulative

vaccination rate at time t, 1
n1

∑n1
i∈C1

yit
µ̂t

. Similarly, the relative transition path of Club 2 (C2),
1
n2

∑n2
i∈C2

yit
µ̂t

, displayed in red with squares,

charts the ratio of the average vaccination rate of states belonging to Club 2 to the national average. As the figure shows, initially the ratio of
Club 1 vaccination rates to the national average was increasing, meaning that the states in Club 1 had cumulative vaccination rates that were
increasing relatively faster than the national average. Necessarily, this means that the vaccination rates in Club 2 were increasing relatively slower
than the national average. This trend continued through week 10, at which point the largest distance between the relative transition paths of Club
1 and Club 2 was reached. From weeks 10 onward the distance between the two paths decreases indicating convergence to a single club toward the
end of the period.

L(t) = log t, t = p+ 1, . . . , T , p = ⌊r × T ⌋ with r = 1/3, and ⌊·⌋ is the integer floor function.

Under the null of relative convergence, Ht is asymptotically converging to zero over time since

hit → 1 as t → ∞. Hence, log(H1/Ht) is increasing over time. If the t-value for b̂ exceeds -1.65,

then the null of relative convergence is not rejected in the test at the 5% level. Note that in

finite samples the term involving 2 log (L (t)) serves as a penalty function in the regression (24), as

explained in P-S. Under relative divergence, Ht and log(H1/Ht) should increase and decrease over

time, respectively. Under fluctuations over time, Ht simply fluctuates, but in view of the penalty

function of −2 log(L(t)), the dependent variable in (24) decreases over time. Hence, the fitted OLS

coefficient b̂ becomes significantly less than zero in this case.

For present purposes in the empirical evaluation of policy effects under trending outcomes, if

the null of convergence is not rejected, then the TWFE regression with ∆yit is well justified since

in the long run the panel yit is identified as having a homogeneous (stochastic or nonlinear) trend.

If the null is rejected, then data analysis may be conducted as described in the next section.

Parallel Trends Tests

The relative convergence test can be used to test for parallel trends. To be specific let τ be the

treatment timing. Then if the panel yit relatively converges for all i up to t = τ , then the outcome

variable shares the same common (nonlinear) stochastic trend during the pre-treatment period.

After τ , if a staggered treatment becomes effective in the long run, then the treated yit should
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diverge from the original convergent club or develop to form another convergent cluster.

But if the panel yit is relatively converging over the entire period then this evidence supports

the hypothesis that there is no treatment effect on the trend coefficients or no long run treatment

effect. Relative convergence means that while all the yit might not be converging to the same

value, their relative relationship to each other becomes closer over time. Thus, if treatment is

randomly assigned and the treated and untreated are relatively converging, we can conclude that

the treatment was ineffective in the long run. As will be shown in the next section, if the yit form

two convergent clubs from t = 1 to t = τ , then the null of parallel trends is rejected. In this case,

any DiD estimators are distorted due to bias from nonparallel (stochastic) trends.11

3.2 Dynamic Clustering Mechanism

One possible outcome is that there are few subgroup convergence clubs, but each of these clubs

diverges from the others over time, in which case a null of overall club convergence would be rejected.

P-S suggested how to find convergent subgroups by using a convergence clustering mechanism

(CCM). This mechanism transforms the full (n×T ) panel dataset into a club membership structure

that features each individual member (n× 1). The CCM requires finding a core convergence club

within the panel. Once a core club is identified, each individual time series is compared with

the core group and is added to the convergence group if it relatively converges. Otherwise, the

individual is classified to another group. Successive repetition of this procedure identifies members

of the first convergent club. The clustering algorithm is then repeated with non-members of the first

convergent club. The approach allows empirical researchers to explore the underlying determinants

of club membership through multinomial logit regression of club membership on driver variables,

as suggested in Phillips and Sul (2007b) and Phillips and Sul (2009).12

yit ∼ I(1) → CCM → Ci

The present paper utilizes this approach to design a robust method of clustering club membership

over time. The proposed method is straightforward and involves recursive implementation of the

CCM algorithm over time to identify the clubs and cluster evolution over time. By allowing club

11There is an alternative method to test parallel trends by means of the weak σ−convergence test proposed
in Kong et al. (2019), which makes use of cross sectional variance rather than logHt. Kong et al. (2019)
considered the null of no σ−convergence, but their null hypothesis can readily be converted to the null of no
divergence. If the cross sectional variance either shrinks or fluctuates over time, the parallel trends condition
holds. Compared with the relative convergence test, the weak σ−convergence test is more attractive. This
is because the relative convergence test needs to discard some initial sample observations and requires large
T since the limit theory reasoning relies on T → ∞ asymptotics. Weak σ−convergence testing need not
discard any initial data and works fairly well in a large n but small T settings. More thorough asymptotic
analysis and simulations will be provided in future work.

12See Sul (2019) for more detailed discussion.

16



membership to evolve over time, empirical researchers can use the DCCM method to examine the

impact of policy changes on club membership, thus allowing for the evaluation of the long run

policy impacts. As we will show in the next section, various patterns of dynamic evolution over

time can be identified by recursively estimating club memberships in this way.

This dynamic version of the CCM approach (viz., DCCM) transforms nonstationary yit to

stationary panel ordered variables, i.e.,

yit ∼ I(1) → DCCM → Cit ∼ I(0).

DCCM employs some modifications of the original algorithm including a fixed rule for initialization

in the recursive regressions13 and a fixed rule for core member detection.14 To clarify, we provide

the following step-by-step procedure showing how to perform the DCCM.15

Step by Step Procedure for DCCM

Step 0 Data Preparation: Let Yit be a raw level variable.

Step 0-1 Measurement unit invariance: Multiply Yit by 10k to get Y ∗
it where k is a large constant

such as 10. Take the log of Y ∗
it . If some of Y ∗

it are zero, add one.

Stpe 0-2 Subtract minimum: Define y∗it = log Y ∗
it and y∗min = min1≤i≤n,1≤t≤T y∗it. Further let

yit = y∗it − y∗min. See Section 3.3 in the Online Supplementary Appendix for how this

method eliminates any measurement unit issues.

Step 1 Fixed rule for initial discarding: Delete the first 5 or 6 time series samples. See Section 3.4

in the online supplementary appendix for further discussion.

Step 2 Robust selection for core group: To distinguish if each yit is relatively converging to a single

convergent club, we need a baseline core group. Using the full sample, find a core group using

the max t rule described in P-S. Usually the minimum number of a core group is 3, and is

typically less than 10. Using the full sample ensures robustness of the core group membership.

Step 3 Initial clustering: With the fixed core from Step 2, run the CCM with a sub-sample of the

data, t = 1, ..., T1 where T1 should be larger than 10. Otherwise, the core group selection fails

due to lack of degrees of freedom. Record the club membership for T1. Assign Ĉi,1 = Ĉi,T1 = 1

if i ∈ G1 where G1 is the first convergent club.

13The log t test in P-S requires initialization of the regressions, eliminating some early observations.
The discard rule used in P-S removed the first 1/3 observations. The rule is problematic in the present
implementation because the sample size changes in recursive regression. Instead, a fixed rule is used here in
which the first 5 or 6 observations are discarded. The Online Supplement provides further discussion.

14The CCM algorithm estimates the initial core members based on the sample observations. To maintain
the core membership in the recursive approach, the core members are fixed in the recursion by employing
the entire sample in their initial detection.

15Stata code for the DCCM is available upon request.
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Step 4 Recursive clustering: Increase the subsample size to t = 1, ..., T1 + 1 and re-run CCM using

the fixed core from Step 2. Record the club membership, Ĉi,T1+1. Repeat this procedure by

adding one additional observation at a time until the whole sample is included.

Step 5 Constructing second convergence club: Collect yit /∈ G1. Run the log t regression in (24). If

the null of relative convergence is not rejected, then yit /∈ G1 forms a separate convergent

club, G2. If the null is rejected, then repeat Step 2 through Step 4 with yit /∈ G1. Continue

this process until all yit belong to a convergence club, or are classified as divergent members

(see P-S for more details).

If the time series sample is large enough and the initial T1 is not small (say, T1 > 25), then

the estimated core group is rather robust, so that it does not need to be fixed in Step 2. After

modifying the data, one can use ‘logtreg’ command in Stata for clustering at each t ≥ T1. See

Section 3.5 in the Online Supplementary Appendix for a more detailed discussion.

The asymptotic justification for the clustering method is given in Appendix C of P-S. As long

as the number of core members is not large relative to the time series sample, consistency of the

clustering mechanism is easily achieved. Consistency of the dynamic version of the CCM approach

can be achieved in the same way. The Online Supplementary Appendix provides details of this

method and reports findings of its finite sample performance from Monte Carlo simulations.

If we knew the specific functional form of dependence and values of bit it would be straightfor-

ward to evaluate its determinants by running a regression of bit on the relevant function f(zi, θx,t, xit).

In practice, finding a specific functional form is challenging and consistent estimation of all of the

idiosyncratic trend coefficients bit is not possible using only the data yit.
16 To avoid these issues,

we utilize the clustering method in P-S, as now explained.

Define J as the number of convergent sub-groups: j = 1, · · · , J . The original algorithm was

designed to provide club memberships based on descending order of the final observation values,

yiT . Hence, the first convergent sub-group always dominates the remaining convergent sub-groups.

Define Ĉit as the estimated membership emerging from the application of DCCM for the ith in-

dividual from 1 to t. This transformation changes nonstationary outcomes yit to stationary club

memberships, Ĉit.

Policy Evaluation Based on DCCM

As discussed in the Introduction and previous subsection, if yit forms a single convergent club before

the implementation of any treatment, then DiD estimation could be employed to evaluate multiple

binary policies by using the estimation method in De Chaisemartin and D’haultfœuille (2023). If

policy variables are not binary, then in practice researchers may assign zero and one based on

16P-S simplifies this challenge by approximating bit using a relative transition curve hit as explained earlier
in (25). However, in this approach the sample cross-sectional mean is often not a robust measure and can
be sensitive to outliers, so it is not used here.
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various threshold points. Such threshold assignment is an ad hoc device, but at least it allows for

the evaluation of various policies jointly. Problems arise, as we will show shortly, when as in our

application a federal policy (or policy that is common to all units) is the only effective policy. In

this case there are no control or nontreated units. Additionally, it is not straightforward to design

an event study analysis when various policies are implemented at different but overlapping times.

When the parallel trends assumption does not hold, or yit forms multiple convergent clubs

(or clusters) before treatment, then DiD estimators are not well defined for yit. Instead, club

membership, Cit grouping is a simple way to deal with this problem. For example, consider two

units (y1t and y2t) over three time periods (−1, 0, 1). Assume y1t is increasing over time continuously,

but y2t decreased initially from t = −1 to t = 0, so that the parallel trend assumption does not hold.

The club membership becomes C1t = 1 but C2t = 2 if t ≤ 0. Further assume that a treatment is

given only to y2t at t = 1 and at t = 1, y2t starts to increase and catch up with y1t. Then, the club

membership of y2t changes from 2 to 1 at t = 1. In this case, the treatment is effective. However,

accurate estimation of the ATT is difficult unless a suitable synthetic control could be constructed.

This interesting and challenging task is beyond the scope of this study, but will be considered in

future work.

Next, assume that a treatment is given to both convergent clubs, but the dynamic patterns are

the same as before: y1t increases continuously but y2t shows a V-shape pattern, with inflection at

the time of treatment. Even though the same treatment is given, the treatment for y2t is more

effective, which is a violation of the random treatment assumption. Nonetheless, the change in

club membership provides evidence of effectiveness of the treatment. In our empirical example,

initially states with lower vaccination rates may have had larger vaccine hesitant populations. As

shown later, the federal vaccine mandate policy is associated with movement in which the lower

vaccinated states converge with the higher vaccinated states. In this case, therefore, even though

the federal vaccine mandate pertained to all states equally, it had a stronger impact on states

with lower vaccination rates. Quantifying the treatment effect from the federal mandate is not

straightforward, however. Similar to the previous case, it is difficult to measure the ATT accurately

since the parallel trends assumption does not hold, and more importantly there is no comparison

group. We discuss how to address this delicate issue in the next subsection.

3.3 Panel Ordered or Logit Regression

If the membership does not change over time, one does not need to run panel ordered logit, but

instead simply run an ordered logit regression with the final club memberships at time T . Otherwise,

the next panel ordered logit regression can be run. The j-th ordered logit model is given by

logit
[
Pr(Ĉit ≤ j)

]
= aj + z′iγj + θ′x,tλj + x′itβj for j = 1, · · · , J − 1, (26)
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where θx,t is a vector of known common policy variables, such as macro factors including market

interest and inflation rates, and federal policy changes. Once the known common factors are

included in the regression, panel fixed effects cannot be identified.17 Note that all variables on the

right hand side influence the trend coefficients in yit. Variables not affecting the trend behaviors of

yit must not be significantly different from zero.

In the case of two sub-convergent clubs, as is the case in the empirical study of the next section,

instead of a panel ordered logit regression one needs to run a panel logit regression with random

effects. In this case, Ĉit = 1 or 2, and the ordered logit regression becomes

2− Ĉit = 1{a+ z′iγ + θ′x,tλ+ x′itβ + eit ≥ 0}, (27)

Note that neither conditional logit nor ordered logit regressions can identify λ since θx,t is common

across individuals so that the conditional likelihood function eliminates θ′x,tλ automatically.17

The economic interpretation of β in (26) and (27) is different from that of conventional TWFE

regression. Since the dependent variable is club membership, the marginal effect of xit is of interest,

which indicates the change in probability when xit increases by one unit. The unconditional logit

regression in (27) also provides potentially complex causal effects to explain club membership. To

see this, rewrite (27) with a single variable, ignoring xit and eit. Further, let γ = λ = 1 and

a = 0. If the i-th state is in the first convergent sub-group at time t, then assign Ĉit = 1; if it

is in the second convergent sub-group, then assign Ĉit = 2. Assume that θx,t is a federal policy

which implements after t ≥ τ (so θx,t = 0 if t ≤ τ , otherwise θx,t = 1), and zi is a particular state

characteristic variable. Then, depending on the values of zi, the federal policy may influence the

club membership differently.

Importantly, the proposed methodology is designed to identify determinants of club member-

ships rather than estimate overall treatment effects. If yit includes a nonlinear trend and exogenous

policy variables cause changes in the trend behavior, the proposed method can identify the relevant

exogenous variables but not estimate the overall treatment effects on yit. But it is possible to

deduce relative information about the implied treatment effects. For instance, if yit forms a single

convergence club before treatment but forms two convergence sub-groups after treatment, define

nGa,t as the number of individuals in Ga at time t for a ∈ {1, 2}. Then the average outcomes for

17Consider, for example, the following conditional logit model with a single common factor and a single
policy variable with two individuals for notational convenience : 2−Ĉit = 1{ai+λθx,t+βxit+eit ≥ 0} with i =

1, 2. The conditional probability at time t = 1 becomes
exp(λθx,1+βx11)

exp(λθx,1+βx11)+exp(λθx,1+βx21)
= exp(βx11)

exp(βx11)+exp(βx21)
.

So λ cannot be identified with observed θx,t.
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each sub-group can be estimated directly from the data by

µ̂G1 =
1

nG1,t

∑
i∈G1

1

T − τ − 1

T∑
t≥τ,Ĉit=1

yit, (28)

µ̂G2 =
1

nG2,t

∑
i∈G2

1

T − τ − 1

T∑
t≥τ,Ĉit=2

yit. (29)

The difference between these two averages provides an estimate of the difference between the two

average overall outcomes, thereby giving information about the relative impact of treatments or

policies. In fact, if xit were all binary policy variables, then either D-DiD or I-DiD estimation could

be used to estimate ATT accurately in this case.

If these two convergent sub-groups eventually merged into a single convergent group from some

point t > τ and more importantly such an event were caused by policy changes, then the implied

treatments in (28) and (29) would become the same in the long run.18 In this case, the implied

treatment effects in the long run could be measured by the difference of the cross sectional averages

of yit between the two clubs at t = τ .

µ̂G1,τ − µ̂G2,τ =
1

nG1,τ

∑
i∈G1

yi,τ −
1

nG2,τ

∑
i∈G2

yi,τ . (30)

We finally note that in any convergence sub-group empirical analysis some individuals may

end up outside any of the identified groups. Such individuals are treated in P-S as outliers or

divergent members of the population. In this case the relevant individuals display behavior outside

the framework of the convergence analysis and these outcomes may need separate empirical study

to explain their behavior.

4 Covid-19 Vaccination in the US

As an empirical illustration, our recursive club clustering methodology was applied to state level

Covid-19 vaccination rates in the US and panel logit regressions were employed to explore the

impact of vaccination policies on actual vaccination rates. By late spring of 2021 COVID-19

vaccinations were widely available in the US, but vaccination rates began to plateau even though

only roughly 45% of the targeted US population were fully vaccinated by mid-May 2021.19 There

18In our covid-19 application reported in the next section, there were initially two separate groups that
diverged and later merged into a single convergent group following a White House announcement of an
upcoming federal vaccine mandate – a situation where the parallel trend assumption was violated.

19The term fully vaccinated was defined at the time as two doses of the Pfizer or Moderna vaccine, or a
single dose of the Johnson & Johnson vaccine.
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was also substantial variation in state vaccination rates: Maine had the highest vaccination rate at

49% in mid-May 2021; and Mississippi had the lowest at the time, with only 26% of residents fully

vaccinated.

Determinants of this variation in state vaccination rates are naturally of considerable interest

to policy makers, epidemiologists, and social scientists. Some preliminary research conducted over

the summer of 2021 pointed to partisanship having a strong association with vaccination rates.

Specifically, it was found that the percentage of votes cast for Donald Trump in the 2020 presidential

election was a primary predictor of vaccination rates: the higher the Trump vote, the lower the

vaccination rate, on average. Around the same time in 2021, cities, counties, and states attempted

to bolster their waning vaccination rates by implementing various vaccine incentive campaigns

such as vaccine lotteries and cash for vaccination. Numerous studies have examined the efficacy of

such incentives in various states and counties across the United States, and have come to differing

conclusions. Some found modest increases in vaccinations resulting from vaccine lotteries or cash

incentives, while others found no statistical evidence that these lotteries or cash incentives increased

vaccinations, even finding small negative impacts in some cases. Table 1 provides reference details

for some of these explicit findings in the literature.

Table 1: Findings of Vaccination Incentives

Small Positive Effect Zero or Small Negative Effect

Barber and West (2022)

Brehm et al. (2022)

Sehgal (2021)

Wong et al. (2022)

Chang et al. (2021)

Dave et al. (2021)

Lang et al. (2022)

Thirumurthy et al. (2022)

Walkey et al. (2021)

By late summer 2021, policies mandating vaccinations for particular sub-populations were an-

nounced and implemented at the state and the federal levels. To examine the impact of vaccination

incentives and policies on vaccination rates, we assembled a dataset of vaccination policies and in-

centives at the state level, including policies that were implemented in large cities or counties within

a state. Section 5 in the Online Supplement explains how the state policy dataset was constructed

and Table 8 in the appendix provides summary statistics for the various state level policies.

In addition, we created a separate federal level vaccine mandate variable. This variable includes

information from a combination of vaccine mandate announcements that were national in scale.

More specifically, it includes announcements signaling upcoming military and federal mandates,

the military vaccine mandate announcement, the various vaccine mandates announced by President

Biden on September 9, 2021, and mandates by private employers that typically were national in
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scope.20 Details on the construction of the federal vaccine mandate variable are given in the Online

Supplement: Section 5.2 and Table 9 in the appendix displays the relevant events and dates that

were used.

Our state level vaccination data came from the publicly available county level data from the

Centers for Disease Control and Prevention (CDC), spanning the period from December 13, 2020

to February 9, 2022. Data prior to May 12, 2021 was discarded because Covid-19 vaccines were

initially in short supply and difficult to obtain, meaning that discrepancies in vaccination rates

across states during this early period may not have been voluntary but simply due to availability.

By mid-May 2021 Covid-19 vaccines were easily accessible in most areas of the United States.

Daily county level data were converted to weekly state level data and logarithms of the resulting

vaccination rates were recorded. There were a few points of decreasing cumulative vaccination rates

for a short period in a small number of states in the data, which was likely due to state or county

reporting errors. To correct for these, we applied Stata’s HP filter21 with a smoothing parameter

of 1600,22 and then subtracted ymin, as suggested in Section 3.1 of the Online Supplement.

As Figure 3 shows, the implementation percentages of both federal level mandates, and state

level mandates are very low through late July 2021, at which point they both sharply increase and

then stabilize. State vaccination mandates stabilize around 0.45, meaning about 45% of states had

some form of state level vaccination mandate in place by September 2021. Federal vaccine mandates

sharply increase over roughly the same time period, although the increase is more stairways than

a single sharp jump, as is the case with state level mandates. The federal level mandates level off

at an implementation rate of 100% since all states were impacted by this federal level mandate.

Vaccination lotteries also show a sharp increase, but the increase is several weeks earlier than

the vaccine mandate increases. This shows that states initially tried to incentivize people to get

vaccinated through positive incentives. After peaking in June of 2021, the use of lotteries to

incentivize vaccination started to steadily fall until converging at zero.

Cumulative vaccination rates are partial sum time series and therefore typically stochastically

20Not all of the federal mandates announced by President Biden on September 9, 2021 were ultimately
implemented. The mandate on large employers was struck down in court, and the mandate for employees
of federal contractors was blocked for months before an August 31, 2022 announcement from the federal
government that it would not be enforcing the mandate.

21The HP filter is by far the most commonly used filter in empirical studies that have employed the P-S
CCM algorithm. A boosting iteration (Mei et al., 2024; Phillips and Shi, 2021) to the filter is known to
estimate deterministic and stochastic trends consistently (even in cases of nonstationary fractional process
trends, as shown in Biswas et al. (2024)) and this modification is often well captured by a single extra
iteration or by suitable changes in the smoothing parameter. We considered other filters in the Online
Supplementary Appendix with little changes in the results.

22Since the data are weekly, higher values than the quarterly smoothing parameter 1600 are sometimes
preferred. In the present case our goal is to smooth the series only moderately because use of a smoothing
parameter that is too large produces a filtered trend that is almost linear. Provided the smoothing parameter
is neither very small nor very large, the empirical results were not sensitive to the specific choice. Details
are provided in the Online Supplement.
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Figure 3: log(Cumulative Vaccination Rate) and Select Policy Common Trends.
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Notes: The left vertical axis scale is the logarithm of the national average cumulative vaccination rate after
filtering out the growth components using the HP filter, which corresponds with the smooth blue line. The
right vertical axis scale is the adoption percentage of vaccination policies. The maroon, green, and orange
lines are measured on the right axis, and each is the national average of the policy at each time t. The
maroon and green lines are sample state level vaccination policies, vaccine mandates for state employees
and/or healthcare workers, and vaccination lotteries, respectively. The orange line is federal level vaccine
mandates. Log cumulative vaccinations do not show any jump or discontinuity over time and the path of
this variable appears impervious to the policy variables being enacted.

nonstationary, and as previously noted in comparing Maine’s cumulative vaccination rate in May

2021 to that of Mississippi, states had heterogeneous trends in vaccination rates from the initial

roll out in December 2020 through the beginning of our sample period in May 2021. For the

reasons explained in Section 2, these characteristics suggest caution in the use of TWFE to assess

the impact of vaccination policies on cumulative vaccination rates. Using first differences (new

vaccination numbers) as the dependent variable does not resolve the potentially misleading findings

from TWFE regressions since the vaccination data involve nonlinear heterogeneous trends (see

Section 2.2).

To address heterogeneity and nonlinearity in the trend behavior of the vaccination data, our

empirical approach was to classify state vaccination rates into groups where homogeneous trends

were manifest. The groupings were obtained by applying the DCCM described in Section 3 to

log cumulative vaccination rates, yit, producing individual club membership data Ĉit, denoting the

estimated convergence club that state i belonged to at time t. As previously noted, Ĉit takes on the

value of 1 or 2 when there are two convergence clubs. Also, as noted earlier, when vaccination rates

began to plateau in each state a variety of vaccination incentive schemes and policies were announced
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and implemented. A dynamic version of the CCM was necessary to explore the evolutionary

relationship between club membership and individual state policy implementation.

We first applied the CCM on the full sample period from May 12, 2021 to February 9, 2022,

using m = 6, where m is the first sample observation used in the regression, a setting that matches

findings from the simulations reported in Section 4 of the Online Supplement. The t-ratio from the

initial log t regression of the entire data set was 7.24, so the null of convergence was not rejected,

implying that vaccination rates of all fifty states plus the District of Columbia were converging

to the same long run national average in February, 2022. The core group from from the P-S

CCM of the full sample consisted of eight members: Connecticut, the District of Columbia, Maine,

Maryland, Massachusetts, New York, Rhode Island, and Vermont. This club membership outcome

is a static full sample result that is uninformative regarding the actual process of convergence and,

in particular, the important empirical question of whether state convergence may have occurred

without intervention or whether vaccination policies impacted state convergence over time.

To address this question the DCCM was employed with recursive sampling to estimate club

membership evolution over time. Core membership was fixed to the aforementioned seven states

plus the District of Columbia. From this core membership we applied the remaining steps of the

clustering process using the first thirteen weeks of data from May 12, 2021 to August 4, 2021,

as described in Section 3. Interestingly, with this shortened dataset involving vaccination rates

only from the late spring to the mid-summer of 2021, there was no evidence of convergence to a

single long run average. Instead, in the mid-summer of 2021 there were two distinct clubs: one

comprising thirteen members (twelve states plus the District of Columbia) with relatively high

vaccination rates, and a second club consisting of 38 states with relatively low vaccination rates.

Working from the given initial club membership obtained for the original (May 12 - August 4)

sample, a recursive analysis was commenced by adding a further week to the original sub-sample,

making the new sub-sample span from May 12, 2021 to August 11, 2021. The clustering algorithm

was re-applied, using the same fixed core from the initial CCM on the full sample. The resulting

outcome again produced two clubs, but Club 1 had all original thirteen members in the higher

vaccination group that were in the May 12, 2021 - August 4, 2021 sample plus two additional

states. This process was continued adding one week at a time and re-running the CCM. With

the initial sub-samples, the addition of each additional week to the sub-sample resulted in more

states joining the relatively high vaccination club, Club 1, each week. This pattern continued until

the sub-sample included data from May 12, 2021 - September 1, 2021. At this point, all of the

states relatively converged, forming a single convergence club. Relative convergence to a single club

continued to hold for each additional week included in the DCCM until the recursion covered the

entire sample, May 12, 2021 to February 9, 2022.

Figure 4 shows the dynamic membership evolution of Club 1 from May 12 through September

1, 2021. The top left panel shows the twelve states plus the District of Columbia in Club 1 from
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May 12, 2021 - August, 2021. Each subsequent panel shows the states belonging to Club 1 as the

sub-sample recursively expands. Club 1 membership evidently grows over time, as can also be seen

by the diamond markers in Figure 5. The last panel of Figure 4, in the lower left position, shows

that when the sub-sample includes the weeks from May 12, 2021 through September 1, 2021, all

the US states are seen to have the same club membership and full convergence applies. (See Figure

2 for the relative transition paths of Clubs 1 and 2 as they move toward convergence over time.)

Figure 4: Dynamic State Membership in Club 1

Notes: The states shaded dark blue are in Club 1 and the light blue states are in Club 2. As the sample
added weeks the membership of Club 1 continued to grow until September 1, 2021, at which point Club 1
included all states giving a single convergence club.

Figure 5 shows federal level vaccine mandate variables plotted alongside the evolving Club 1

membership. Two federal level vaccine mandate variables are displayed in the graph: one includes

private employer vaccine mandates and the other does not. By design the fraction of states in

Club 1 is held constant through August 4, at which point it began to rise steadily for several weeks

merging into a single convergence club in September. In July 2021, 9% of employees nationwide

reported working for an employer with a vaccination mandate according to a monthly Gallup poll

conducted during this time period. One month later, in August 2021, that figure jumped by 10

percentage points to 19%. Additionally, on August 23, 2021, President Biden’s press secretary

announced that more stringent national vaccine mandates were coming. See Table 9 in the online

appendix for further details on the construction of FEVM and its timing. The fraction of state
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membership of Club 1 closely tracks the course of these federal level mandates.

Figure 5: National-Level Mandates and Dynamic Club 1 Membership
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Notes: The federal mandates variable is plotted in maroon, this variable combined with employer mandated
vaccinations is plotted in orange, and the fraction of states belonging to Club 1 is plotted in green. The
fraction of states in Club 1 and the federal vaccine mandate variable are flat until early August 2021. The
federal mandates variable, the one capturing both the federal mandates and the employer mandates, slowly
increased in early summer 2021 before increasing dramatically from July to August 2021, and again from
August to September 2021. All three variables end up at unity by September 9, 2021.

The federal mandates variable, the state policy dataset, and the dynamics of club membership

offer the opportunity to explore the impact of federal-level mandate announcements and state-level

policies on club membership. An unconditional panel logit (random effects) regression in (27) was

used to examine some of the effects of these time-varying policies. We used the combined federal

and employer mandates as a common factor θx,t, and various state specific variables as zi including

political trends, state demographic characteristics, such as population density, median household

income, education, and the percentage of people employed by industry for each state. Various

state-level vaccination policy variables comprise xit, including state incentives for vaccinations and

state vaccination mandates.

Table 2 column (5) shows the results of the preferred specification from the panel unconditional

logit (random effects) regression.23 The large coefficient on the federal level mandate variable

shows that the probability of being in Club 1 given the federal mandate is extremely high. We

also ran the model for column (5) from Table 2 with a two-week lag in each of the policy variables.

23Tables 9, 10, and 11 in the Online Supplement report results of other specifications used in the uncon-
ditional panel logit regressions.
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While lagging each policy two weeks weakened the coefficient on the federal level mandate variable,

it was still highly significant and remained the only policy variable with a correlation with club

membership that was statistically different from zero. Thus, including the two week lag did not

impact our overall findings, but we conclude that the association with vaccination rates and the

federal mandates is stronger simultaneously than it is with a two week lag. See Table 14 in the

online supplementary appendix for details. This aligns with Figure 5 where transition to Club 1

moves very closely with the implementation of the federal level mandates.

Interestingly, no state level vaccination policies or incentives had any significant impact on

club membership. Also, contrary to our findings in the summer of 2021, by February 2022 our

results suggest that once population density, median household income, the percentage of the

population that is foreign born, and the industry composition of a state are all controlled for,

political party is not associated with club membership in a statistically significant way. States with

a larger percent of foreign born individuals were more likely to be in Club 1 initially. States with

higher numbers of health care and social assistance workers as well as higher percentages of people

employed in the retail trade industry were also initially more likely to be in Club 1, whereas states

with higher percentages of employees working in wholesale trades were less likely to be in Club

1. The McFadden pseudo R2 value is very high for our preferred specification, showing that the

improvement in our model from the based intercept only specification is substantial, indicating the

fitted model regression almost fully explains club membership.

In sum, as shown in Table 2, the only significant variables are FEVM and some state specific

characteristics. These state specific variables (ai) are associated with heterogeneous vaccine uptake

initially across states, which led to divergent behaviors of yit. As the FEVM were implemented, we

saw an overall convergence of the yit. As discussed in (30), we might deduce the implied treatment

effect. Table 3 shows the national average of the log cumulative vaccine rates across convergent

clubs. The maximum difference between the two clubs was 0.158, which occurred during the 14th

week in our sample, the week of August 11, 2021. After this point, the difference in vaccination

rates between the two clubs began to shrink as the two clubs merged into one convergent club.

Hence, the implied ATT in the long run might be 0.158, but in the short run at the 40-th week it

is 0.024 (=0.158-0.135).

For comparison with the above findings linear random effects regressions were run according to

the following specifications using levels and differences as the dependent variable:

yit = a+ z′iγ + λθx,t + x′itβ + ϵit, (31)

∆yit = a+ z′iγ + λθx,t + x′itβ + ϵit, (32)

yit = ai + λθx,t + x′itβ + ϵit, (33)
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∆yit = ai + λθx,t + x′itβ + ϵit, (34)

where yit is the logarithm of state i’s cumulative vaccination rate, ∆yit is the log of the number

of new vaccinations per 10,000 people (the first difference of vaccinations), θx,t is the federal level

mandates, zi are state fixed effects, and xit is a vector of state level policies and the number of new

infections per 10,000 people in a state each week. The results are displayed in columns 1-4 of Table

2. The R2 values show that the policies explain significantly more of the variation in cumulative

vaccination rates than they do new vaccinations. The coefficients and levels of significance are very

similar to the random effects model and fixed effects model for each of the dependent variables.

For this reason we limit our discussion of the regression results here to the fixed effects model for

both dependent variables.

When the log cumulative vaccination rate is the dependent variable, new infections and federal

level vaccine mandates are both positive and highly significant. But, state level policies have no

significant impact on cumulative vaccinations, with the exception of bans on proof of vaccination.

The positive coefficient result suggests that if a state implemented a ban on proof of vaccination,

cumulative vaccinations in that state would increase, which is a curious outcome that may be the

spurious result of the nonlinear trend effects discussed earlier.

In the regressions with new (first differenced) vaccinations as the dependent variable there are

several anomalous signs in the fitted coefficients. For instance, the signs on new infections, federal

level vaccine mandates, and state level mandates on state employees are all negative and counter

intuitive as higher infection rates and vaccination mandates are more likely to increase than reduce

new vaccinations. Further, the empirical results imply that the only state level policy that increased

new vaccinations per 10,000 people was a ban on mask mandates. It might be argued that banning

mask mandates led people with high risk aversion to Covid-19 infection to get vaccinated because

they felt less secure, but those people were already most likely to be vaccinated. As discussed

earlier in Section 2.2, use of first differences does not eliminate time trend effects in the data and

these counter intuitive results are again the likely outcome of misspecification and failure to capture

separate group behavior in the data.

In sum, comparing the regressions results across Table 2, the panel logit regressions seem to

provide the most plausible and intuitive findings. The natural explanation is that the panel logit

models provide well specified formulations that take account of club membership arising from

nonlinear trend effects and separate group convergence behavior that together determine cumulative

vaccinations.
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Table 2: Regression Results

Linear Models Logit Model

Dependent Variable: yit ∆yit (2− Ĉit)

(1) (2) (3) (4) (5)
FE RE FE RE RE

New Infections per 10,000 People (xit) 0.005 0.005 -0.004 -0.004
(0.0001) (0.0001) (0.002) (0.002)

Federal Mandate and Employer Mandates
(θx,t)

0.251 0.252 -0.438 -0.442 101.0

(0.012) (0.012) (0.053) (0.053) (22.39)
State Incentives (xit)

Lottery 0.003 0.003 0.041 0.037 -1.468
(0.012) (0.013) (0.047) (0.046) (2.038)

Cash 0.016 0.016 0.090 0.089 -0.084
(0.011) (0.011) (0.049) (0.050) (3.405)

Community Outreach 0.028 0.029† -0.043 -0.047 -2.440
(0.015) (0.014) (0.051) (0.045) (3.372)

State Policies (xit)
Vaccine Mandate State Employees 0.016 0.017 -0.199 -0.190 -1.919

(0.012) (0.011) (0.056) (0.055) (2.258)
Indoor Vaccine Mandate 0.016 0.015 0.043 0.041 14.33

(0.011) (0.011) (0.125) (0.121) (36.00)
Mask Mandate 0.007 0.007 -0.051 -0.051 2.096

(0.012) (0.012) (0.094) (0.090) (3.567)
Ban on Proof of Vaccination 0.086 0.071 -0.221 -0.201 -3.164

(0.020) (0.016) (0.129) (0.099) (5.166)
Mask Mandate Ban 0.013 0.006 0.193 0.129 -1.810

(0.059) (0.045) (0.075) (0.062) (6.160)
Political (ai)

Percent of State House that is Republican -0.550 -0.130 7.037
(0.104) (0.212) (24.41)

Percent of Vote for Trump 2020 -0.042 -0.262 -13.66
(0.073) (0.104) (10.53)

State Characteristics (ai)
Population Density -0.010 -0.002 11.36

(0.020) (0.019) (6.153)
Median Household Income 0.026 0.018 2.379

(0.014) (0.018) (2.497)
Percent Foreign Born -0.001 0.126 1.327

(0.003) (0.005) (0.609)
Percent of People Employed by Industry (ai)

Health Care and Social Assistance 0.048 0.004 3.626
(0.011) (0.017) (1.412)

Government and Government Enterprises -0.006 0.002 -2.055
(0.066) (0.008) (1.291)

Retail Trade 0.029 0.020 11.90
(0.025) (0.043) (3.968)

Wholesale Trade -0.015 -0.018 -13.07
(0.036) (0.058) (5.901)

Transportation and Warehousing -0.019 -0.017 -9.513
(0.026) (0.041) (6.242)

n 51 51 51 51 51
T 40 40 40 40 40
R2 0.832 0.808 0.664 0.632
McFadden’s R2 0.936

Notes: Numbers in parentheses are standard errors. Median household income is measured in tens of thousands
of dollars and population density is per 1,000 square miles. The dependent variable for the linear level model,
yit, is log(cumulative vaccination rate) and the dependent variable for the linear first differenced model, ∆yit,
is log(new vaccinations per 10,000 people). The binary club membership obtained from the P-S club clustering

technique, Ĉit, is the dependent variable in the logit regressions. The coefficient on the federal level mandates
in the unconditional logit model is large and all state level policies had no impact on the likelihood of being in
the high vaccination club.
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Table 3: Cross sectional averages for Club 1 and 2

No. of Weeks µ̂1t µ̂2t Difference

1 3.629 3.527 0.102
14 4.016 3.859 0.158
17 4.057 3.904 0.153
40 4.247 4.111 0.135

5 Conclusion

When outcome variables have nonlinear and possibly stochastic trends, evaluating the effectiveness

of policy changes by using TWFE regressions can be problematic. This paper shows the underlying

reasons for this empirical problem and proposes an alternative approach. The key idea is a simple

method to transform panel nonstationary outcome data into panel multinomial data by using a

dynamic clustering method based on the relative convergence test of Phillips and Sul (2007a).

This approach allows researchers to use panel logit regressions to investigate how policies that are

implemented can impact convergence club membership or the long run behavior of the dependent

variables over time.

The dynamic convergence clustering mechanism is applied to state level Covid-19 vaccination

rates in an empirical example of this methodology. Our findings indicate that there were initially

two distinct convergence clubs, but over time all states converged to a single club. We use panel logit

to show how national and state policies were correlated with club membership over time, and that

the timing of the convergence was very highly correlated with the timing of federal level vaccination

mandates. Finally, we demonstrate how the regression results from panel logit regressions appear

to give more realistic results than linear models.

There are two drawbacks of the proposed method. First, the number of time series observations

cannot be too small. To estimate time varying convergent club membership the time series sample

size T should be large enough to capture the evolution of club membership. In the Covid-19

vaccination empirical example T = 40 observations were available for the time series sample and

the recursive sampling procedure was initiated with sample size T = 13. This choice complies with

the minimum sample size T = 10 for the clustering algorithm that was used in Phillips and Sul

(2007a). When T is smaller we suggest not using the dynamic CCM but instead static CCM and

running a cross-sectional logit or multinomial logit regression.

Second, to use the proposed method, the panel should be balanced since the dynamic CCM

tracks each individual club membership over time. If some data are missing within time periods,

then interpolation and filtering to smooth out the series can be employed. Since the proposed

method is designed for analyzing long run effects, small modifications of this type typically do not

affect the membership findings. If data are missing at the beginning or end of the sample, then
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backward or forward forecasting would be required and the accuracy of such modifications is not

studied in the paper.
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